Aerosol Effects in China: Observations and Modeling

L. Ruby Leung, Jiwen Fan, Yun Qian Pacific Northwest National Laboratory

Alexander P. Khain, Barry Lynn Hebrew University of Jerusalem

> Zhanqing Li University of Maryland

DOE Integrated Climate Change Modeling Science Team Meeting March 29 – April 2, 2010

Background

- China has experienced significant changes in air quality the emissions of fossil fuel sulfur dioxide have increased about nine-fold since 1950
- Aerosols can influence global and regional energy and water cycles through their interactions with radiation and cloud microphysical processes
- Our observational analyses have provided strong evidence of aerosol direct effects in China

Air pollution has been increasing

Global solar radiation under cloud free days has decreased

Aerosol effects on precipitation

Total precipitation exhibits the north drought – south flood trend

Light precipitation has, however, decreased uniformly in East China

- How can we more firmly establish the relationships between aerosols and the observed climatic trends in China?
- Do climate models have adequate physics parameterizations to answer the above question, especially aerosol indirect effects?
 Pacific Northwest
 NATIONAL LABORATORY

Approach

- Simulations have been performed using the Weather Research and Forecasting (WRF) model
- Measurements (e.g., AMF-China) are used to evaluate the simulations and physics parameterizations
- Two cloud microphysics parameterizations have been compared – the bulk microphysics (BM) typically used in climate models and the highly detailed spectral bin microphysics (SBM)
- Can the BM schemes reproduce the basic cloud microphysical and dynamical features simulated by the SBM scheme?
- Do the BM and SBM schemes produce similar sensitivity of cloud and precipitation to aerosol concentrations?

Case Studies Using Data From AMF-China

Two different cloud regimes, deep convective and stratiform clouds, have been selected from the AMF-China field Campaign

Cloud Resolving Simulations Setup

WRF coupled with a spectral bin microphysics (SBM) scheme [Khain and Lynn, 2010] is employed to simulate clouds under polluted and clean conditions (P_case and C_case)
ShouXian

	Outer domain	Inner domain
P-Case	N _c = 1000 cm ⁻³	N _{ccn} = 8600 cm ⁻³
C-case	N _c = 300 cm ⁻³	N _{ccn} = 1440 cm ⁻³

Real case driven with NCEP 1°x1° reanalysis data

Results: July 17, 2008

Results: July 17, 2008

Aerosols redistribute clouds spatially; convection is much weaker near Shouxian in the clean atmosphere

Both spatial and temporal distributions of rain rate in the P_case compare better with observations than the C_case

Results: November 7, 2008

Comparison with W-band cloud radar and MWRP data

Results: November 7, 2008

- Rain rates from P_case agree with observations, except starting earlier
- Aerosols prolong cloud lifetime and extend the rainy period
- Aerosols significantly decrease rain rate and delay the onset of precipitation, but they do not redistribute clouds, as seen in the deep convective system of July 17

Idealized simulations of a squall line using the SBM and BM schemes

- The BM scheme produces more pronounced multi-cell structure
- The BM scheme also produces significantly more graupel and hail, as well as snow and ice (not shown)

Conceptual Model of a Squall Line

- Squall line structure depends on the balance between near surface cool pool and vertical wind shear
- Upshear tilt and cell splitting can result when the cool pool overwhelms the wind shear effect
- In bulk schemes, rain drops follow simple distribution functions mean rain drop size decreases after evaporation, which accelerates evaporation, leading to stronger cool pool and multi-cell structures (Li et al. 2009) Pacific Northwest

NATIONAL LABORATORY

What are the implications?

The BM scheme produces much higher precipitation amount and large and monotonic reduction of precipitation in response to increasing aerosol concentrations

Summary

- Using an SBM scheme at the cloud resolving scale, the structure of different types of clouds including deep convective, stratiform, and squall line are realistically simulated
- Aerosols significantly redistribute precipitation regionally in the deep convective system, but not in the stratiform cloud regime
- Aerosols delay precipitation and extend cloud life time and precipitation, leading to an overall increase in accumulated rain for all three cloud regimes
- With many simplifying assumptions, the BM schemes can produce rather different microphysical and dynamical structures of clouds compared to the SBM, leading to different sensitivity to aerosol concentrations
- Detailed comparison of the BM vs SBM parameterizations can provide guidance on improvements to the BM schemes for long term simulations of aerosol effects

